

# **Organosubstituierte Heterocyclen** mit CBOBCCN-, OPBC=CB- und BOBCC-Gerüst -Herstellung, Charakterisierung in Lösung und im festen Zustand<sup>[1]</sup>

Roland Köster\*, Günter Seidel und Gerhard Müller<sup>12</sup>

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr

Eingegangen am 18. Mai 1993

Key Words: Amine–Diboroxanes, bicyclic, saturated / Oxyphosphane–Boranes, monocyclic, unsaturated / Diboroxanes, cyclic, arsanyl substituted / Borane-Oxyphosphanes

## Organosubstituted Heterocycles with CBOBCCN, OPBC=CB, and BOBCC Skeletons - Preparation, Characterisation in Solution and in the Solid State<sup>[1]</sup>

The salts  $K[OB(R_2^2)C(R^3)=C(R^4)BEt]$  [A:  $R^{2-4} = Et$ ; B:  $R^{2,3} = Et$ ,  $R^4 = Ph$ ; C:  $R^{2,4} = Et$ ,  $R^3 = Ph$ ; D:  $R_2^2 = C_8 H_{14}$ ,  $R^{3,4} = Et$ ] react with [Me2NCH2]Br in THF to form the saturated bicyclic amine-tetraalkyldiboroxanes  $Et(R^7)CB(R^1)OB(Et)C(R^4)CH_2N$ -Me<sub>2</sub> [1a (X-ray crystal structure analysis):  $R^{1,4,7} = Et$ ; 1b/1b':  $R^{1,4} = Et_i R^7 = syn/anti-Ph;$  1c:  $R^{1,7} = Et_i R^4 = Ph_i$  and 1d/1d':  $R^{1,7} = syn/anti-C_8H_{14}$ ,  $R^4 = Et$ ]. A–D react with ClPPh<sub>2</sub> to give the six-membered monocyclic  $OP(Ph_2)B(R_2^3)C(R^4)=C(R^5)BEt$   $[2a: R^{3-5} = Et; 2b: R^{3,5} = Et, R^4 = Ph; 2c: R^{3,4} = Et, R^5 = Ph; 2d$ (X-ray crystal structure analysis):  $R_2^3 = C_8 H_{14}$ ,  $R^{4,5} = Et$ ]. From A-C and ClAsPh<sub>2</sub> the 1,2,5-oxoniadiboratoles  $O(AsPh_2)$ - $\overline{B(Et)C(R^4)}=C(R^3)BEt_2$  [**3a**:  $R^{3,4}=Et_i$  **3b**:  $R^3=Et_i$ ,  $R^4=Ph_i$  **3c**:  $R^3 = Ph, R^4 = Et$ ] are obtained, which rearrange to the 1,2,5oxadiborolanes  $OB(Et)C(R^3, AsPh_2)C(R^4, Et)BEt$  [4a:  $R^{3,4} = Et$ ; 4b/4b':  $R^3 = Et$ ,  $R^4 = Ph$ ; 4c:  $R^3 = Ph$ ,  $R^4 = Et$ ].

Die aus den cis-1,2-Bis(diorganoboryl)alkenen<sup>[3]</sup> und Kaliumhydroxid hergestellten organosubstituierten Kalium-1,2,5-oxadiboratolate  $A-D^{[4]}$  haben wir mit den elektrophilen Reagentien [Me2NCH2]Br, Ph2PCl und Ph2AsCl umgesetzt.



Dabei ließen sich neue Organobor-Heterocyclen 1 und 2 mit CBOBCCN- und OPBC=CB-Gerüst sowie am O-Atom Ph<sub>2</sub>As-substituierte BOBC=C-Verbindungen 3 und am C<sup>3</sup>-Atom Ph<sub>2</sub>As-substituierte BOBCC-Heterocyclen 4 herstellen.

Die unterschiedlich organosubstituierten Salze A-D haben wir eingesetzt, um mögliche Regio- oder Stereoselektivitäten der Produktbildung kennenzulernen. Während aus dem perethylierten Salz A einheitliche Verbindungen zu erwarten sind, sollten aus den an den C<sup>3,4</sup>-Atomen unterschiedlich substituierten Salzen B-D regio- oder stereoisomere Produkte gebildet werden.

Die Heterocyclen 1 und 2 sind wie die aus den Kaliumsalzen der BOSiC=C-Anionen<sup>[5]</sup> zugänglichen Silaanaloga I und II<sup>[6]</sup> aufgebaut. Dabei gehört der Verbindungstyp 1 zu den bisher wenig bekannten Amin-Tetraorganodiboroxanen<sup>[7]</sup>, von denen neben nichtcyclischen Vertretern III auch cyclische Derivate IV<sup>[8]</sup> untersucht werden. Amin- und

FtF R<sup>4</sup> R5 Nr. syn R<sup>7</sup>  $R^1$ anti R<sup>7</sup> R<sup>4</sup> Nr. R<sup>3</sup> 1a Et Et Et Et 2a Et Et<sub>2</sub> Et Ph Ph Et 1b 2b Et<sub>2</sub> Et Et Et

Et

Ph

Ēt

Et

2c

2d

Et<sub>2</sub>

C8H14

Ph

Et

Et

C<sub>8</sub>H<sub>14</sub>

|                                | AsPh <sub>2</sub><br> <br>D <sup>1</sup> |
|--------------------------------|------------------------------------------|
| Et <sub>2</sub> B <sup>2</sup> | 5<br>BEt                                 |
| $\rightarrow$                  |                                          |

Et

Et

C8H14



Ph

Εt

Et

Et

| 5 mar 112  | K. | K' |
|------------|----|----|
| <b>3</b> a | Et | Et |
| 3b         | Et | Ph |
| 3c         | Ph | Et |

| Et B | ∕°             | B <sup>2</sup> Et |
|------|----------------|-------------------|
| Et   | R <sup>4</sup> | AsPh <sub>2</sub> |

| Nr. | R <sup>3</sup> | R <sup>4</sup> |
|-----|----------------|----------------|
| 4a  | Et             | Et             |
| 4b  | R-Et           | <i>R-</i> Ph   |
| 4b' | S-Et           | <i>R</i> -Ph   |
| 4c  | Ph             | Et             |

1b'

1c

1d

ld'

Et

Et

Et

Imin-Triorgano-<sup>[9]</sup> sowie Lewisbase-Diorganodibor-oxane<sup>[10]</sup> sind bereits in großem Umfang beschrieben worden. Zu den verwandten Ringverbindungen mit 1,2,5-Oxoniadiboratolat-Struktur gehören die Verbindungen  $V^{[4]}$  und  $VI^{[11,12]}$ .



# Heterocyclen 1 mit CBOBCCN-Gerüst

Das Kalium-Salz A reagiert mit Dimethylmethylenammonium-bromid  $[Me_2NCH_2]Br$  in siedendem THF nach Gl. (a) unter Bildung der kristallisierten Verbindung **1a**. Das mit 81% Ausbeute gewonnene Produkt enthält je ein 3fach sowie 4fach koordiniertes Bor-Atom (Tab. 2). **1a** hat die massenspektrometrisch ermittelte Summenformel  $C_{15}H_{33}B_2NO$  und ist ein Amin-Tetraorganodiboroxan mit Bicyclo[2.2.1]heptan-Struktur, die durch Röntgenbeugungsanalyse (s.u.) bestätigt wird.



Verbindung **1a** entsteht aus A vermutlich nach K/ Me<sub>2</sub>NCH<sub>2</sub>-Substitution über eine Oxonium-Zwischenverbindung, aus der unter  $B^2/C^3$ -Ethylwanderung das in 4-Stellung Me<sub>2</sub>NCH<sub>2</sub>-substituierte 1,2,5-Oxadiborolan gebildet wird. Durch Ausbilden der NB<sup>2</sup>-Koordinationsbindung bildet sich **1a**.

Die Herstellung von 1a aus A entspricht weitestgehend der des 2-Sila-Analogen<sup>[6]</sup>. Allerdings ist die Stabilität des CBOSICCN-Bicyclus deutlich höher als die des bicyclischen 1a, über dessen thermische Umwandlung demnächst berichtet wird<sup>[13]</sup>.

Aus dem Gemisch der regioisomeren Kaliumsalze **B** und **C** erhält man mit  $[Me_2NCH_2]Br$  in siedendem THF entsprechend den Gl.  $(b_1)-(b_3)$  ein Gemisch der stereoisomeren 7-Phenyl-Verbindungen 1b/1b' sowie des regioisomeren 4-Phenyl-Derivats 1c (<sup>13</sup>C-NMR). Die Verbindungen lassen sich destillativ nicht voneinander trennen.



Läßt man bei Raumtemperatur auf das in THF gelöste 9-BBN-haltige Kaliumsalz **D** die 1-2fache Menge [Me<sub>2</sub>NCH<sub>2</sub>]Br einwirken, so isoliert man nach einigen Stunden entsprechend den Gl. (c<sub>1</sub>) und (c<sub>2</sub>) ein (3: 2)-Gemisch der *syn/anti*-Isomeren **1d** und **1d'** (<sup>13</sup>C-, <sup>17</sup>O-NMR).



1d und 1d' mit dem in 1,7-Position gebundenen 9-BBN-Rest sind von den Verbindungen des Typs 1 am instabilsten. Heterocyclen mit CBOBCCN-, OPBC=CB- und BOBCC-Gerüst

Über die Produkte der thermischen Umwandlung des Heterocyclus 1d wird später berichtet<sup>[13]</sup>.

### Heterocyclen 2 mit OPBC=CB-Gerüst

Die Kaliumsalze A–D reagieren auch mit Chlordiphenylphosphan bereits bei Raumtemperatur. Nach Gleichung (d) erhält man aus A und D die OPBC=CB-Heterocyclen 2a und 2d bzw. aus dem B/C-Gemisch die Regioisomeren 2b und c, jeweils mit Ausbeuten von über 90%. Die ungesättigten Sechsring-Verbindungen 2 werden nach K/Ph<sub>2</sub>P-Substitution vermutlich über die nicht nachgewiesenen 2,5-Dihydro-1,2,5-oxoniadiboratolate 3 gebildet. Die zunächst exocyclische Ph<sub>2</sub>P-Gruppe wird in den Heterocyclus eingebaut.



Pentaethyliertes 2a läßt sich aus THF nahezu quantitativ isolieren, ist jedoch gegenüber Sauerstoff bereits bei Raumtemperatur nicht resistent. Mit Feuchtigkeit reagiert die  $BC_{vinyl}$ -Bindung von 2a beim gelinden Erwärmen unter Hydrodeborylierung.

Aus dem Kaliumsalz **D** erhält man mit  $ClPPh_2$  in siedendem THF nach Gl. (d) die kristallisierte Verbindung **2d**, durch deren Röntgenstrukturanalyse (s.u.) die Struktur des OPBC=CB-Gerüsts bestätigt werden konnte.

Das Gemisch der regioisomeren Anionen **B** und **C** reagiert mit ClPPh<sub>2</sub> in siedendem THF nach Gl. (d) zu einem gelben, hochviskosen (2b/2c)-Gemisch. Die Regioisomeren 2b und c lassen sich <sup>13</sup>C- und <sup>17</sup>O-NMR-spektroskopisch voneinander unterscheiden (Tab. 2).

Die OPBC=CB-Sechsringe des Typs 2 sind erste cyclische Vertreter der (Boryloxy)diphenylphosphan-Triorganoborane mit einer koordinativen PB-Bindung. Über Additionsverbindungen der (Boryloxy)diorganophosphane<sup>[14]</sup> haben wir bisher nur vorläufig berichtet<sup>[15]</sup>. Nichtcyclische<sup>[16]</sup> sowie zahlreiche vier- bis sechsgliedrige cyclische Triorganophosphan–Triorganoborane<sup>[17–19]</sup> sind bereits bekannt. Als 1-Oxa-2-phosphonia-6-bora-3-borata-4-cyclohexene ähneln die Verbindungen **2** den früher beschriebenen Verbindungen mit OPBC=CSi-Gerüst<sup>[6]</sup>.

## Heterocyclen 4 mit BOBCC-Gerüst

Das Kaliumsalz A reagiert mit der äquimolaren Menge Chlordiphenylarsan ClAsPh<sub>2</sub> in siedendem THF entsprechend Gl. (e) unter Bildung einer farblosen, kristallinen Verbindung **4a**. Das mit hoher Ausbeute isolierte Produkt **4a** bildet sich vermutlich über die Zwischenverbindung **3a**-AsPh<sub>2</sub>, aus der unter Wanderung der am Sauerstoff-Atom gebundenen Ph<sub>2</sub>As-Gruppe zum C<sup>4</sup>-Atom sowie des Platzwechsels der B<sup>2</sup>-Ethylgruppe zum C<sup>3</sup>-Atom das Racemat *rac*-**4a** mit chiralem C<sup>4</sup>-Atom entsteht. Die formale (C<sup>3</sup>=C<sup>4</sup>)-Ethyloarsanierung entspricht den Ethylocarborierungen mit dem [Me<sub>2</sub>NCH<sub>2</sub>]Br-Reagens zu den stereoisomeren Verbindungen **1b**/1b' bzw. **1d**/1d'.



Aus dem B/C-Gemisch und ClAsPh<sub>2</sub> erhält man in siedendem THF ein Gemisch der regioisomeren Verbindungen (**3b/3c**)AsPh<sub>2</sub>. Aus diesem bildet sich durch intramolekulare Ethyloarsanierung ein Gemisch der Verbindungen **4b/4b'** und **4c** (<sup>11</sup>B-NMR). 2,5-Dihydro-1,2,5-oxoniadiboratole<sup>[5a]</sup> mit Ph<sub>2</sub>As-Gruppierung am O-Atom sind verhältnismäßig stabil und werden als O-Lewisbase–Triorganoborane<sup>[20]</sup> erst beim Erhitzen auf ca. 80 °C langsam in 1,2,5-Oxadiborolane<sup>[21]</sup> umgelagert<sup>[5b]</sup>. Aus dem B/C-Ausgangsgemisch werden zunächst ca. 25% (**3b/3c**)AsPh<sub>2</sub> und ca. 75% **4b/4c** gebildet (<sup>11</sup>B-NMR). B und C reagieren mit ClAsPh<sub>2</sub> nicht einheitlich, da in dem Reaktionsgemisch auch Arsane wie Ph<sub>2</sub>AsEt und Ph<sub>3</sub>As sowie das Diarsan Ph<sub>2</sub>As<sub>2</sub> massenspektrometrisch nachzuweisen sind.

#### **Ergebnis und Ausblick**

Die drei durch die Elektrophile  $[Me_2NCH_2]^+$ ,  $Ph_2P^+$ und  $Ph_2As^+$  beschriebenen Kalium-Substitutionen von A–D verlaufen über O-Substitutionsprodukte, die bei der ClAsPh<sub>2</sub>-Reaktion des B/C-Gemischs als Verbindungen 3As nachgewiesen wurden. Die Stabilisierung derartiger 1,2,5-Oxoniadiboratole hängt entscheidend vom Hetero-Atom im Elektrophil ab. Während die Produktbildung bei den Nund P-haltigen Reagenzien durch die Ausbildung einer NBbzw. PB-Koordinationsbindung bestimmt wird, kommt es beim As-haltigen Reagens wegen Ausbleibens der entsprechenden (As–B)-Wechselwirkung ausschließlich zur unspezifischen Umlagerung der O-Substitutions-Zwischenverbindung.

Durch die in Abhängigkeit von den Organosubstituenten unterschiedlich leicht zu öffnenden NB-Bindungen dürften sich die Bicyclen des Typs 1 zur Untersuchung von deren thermischer Stabilität und Reaktivität eignen<sup>[13]</sup>. Die Heteroatom-haltigen Bicyclo[2.2.1]heptane 1 können vermutlich auch zur enantioselektiven Synthese und zur Enantiomerentrennung tertiärer Amine verwendet werden. Die Phosphor-haltigen, ungesättigten cyclischen Diboroxane 2 sollten vor allem für  $\pi$ -Komplexierungen von (Ligand)Übergangsmetallen von Interesse sein.

#### Spektroskopische Charakterisierung der Heterocyclen 1, 2 und 4

*IR und Raman:* Charakteristische Schwingungen der *C*-Phenylgruppen des CBOBCCN-Gerüsts von 1 b/1 c bzw. am P- und B-Atom von 2b/2c treten im Bereich von 1570-1595 cm<sup>-1</sup> auf. Die C=C-Bindung der vier OPBC=CB-Cyclen 2a-d absorbiert im IR-Bereich bei 1520-1530, im Ramanspektrum bei 1537 cm<sup>-1</sup> (2d)<sup>[6,22]</sup>.

*EI-MS*: Die Verbindungen 1 und 2 haben einen intensitätsschwachen Molekülpeak (Tab. 1). Basismasse von 1 ist das B<sub>1</sub>-Bruchstück-Ion m/z 84 (EtBNMe<sub>2</sub>: 1a, 1b) oder m/z56 (HBNMe<sub>2</sub>: 1d). Die Bruchstückmasse m/z 58 der Verbindungen 1 entspricht vermutlich dem Ion Me<sub>2</sub>NCH<sub>2</sub><sup>+</sup>. Charakteristisch für sämtliche Verbindungen des Typs 1 sind

Tab. 1. Auszüge aus den Massenspektren der Heterocyclen 1, 2 und 4

| Verbindung            |               | m/z (% rel. Intensität) <sup>[a]</sup> |                                                        |                                                                           |  |  |
|-----------------------|---------------|----------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|--|--|
| Nr.                   | Mol-<br>masse | M+                                     | Basis- Weitere charakteristis<br>peak Bruchstückmassen |                                                                           |  |  |
| <b>1</b> a            | 265.1         | 265(1)                                 | 84                                                     | 236(<1),180(25),140(63),<br>58(22), 56(32)                                |  |  |
| 1b <sup>[b]</sup> /1c | 313.1         | 313(3)                                 | 84                                                     | 284(11),228(B <sub>1</sub> ,18),<br>140(B <sub>2</sub> ,74),58(20),56(43) |  |  |
| 1d <sup>[c]</sup>     | 317.1         | 317(7)                                 | 56                                                     | 288(11),124(15),112(14),<br>84(52),58(51)                                 |  |  |
| 2a                    | 392.1         | 392(<1)                                | 185                                                    | 363(18)                                                                   |  |  |
| 2b/2c                 | 440.2         | 440(1)                                 | 185                                                    | 411(21)                                                                   |  |  |
| 2d                    | 444.2         | 444(11)                                | 415                                                    | 323(20),185(75)                                                           |  |  |
| 4a                    | 436.1         | 436(1)                                 | 41                                                     | 207(62),151(74)                                                           |  |  |
| 4b[c]/4c              | 484.1         | 484(<1)                                | 199                                                    | 255(43),117(46)                                                           |  |  |

<sup>[a]</sup> EI-Massenspektren (70 eV); angegeben sind die Massen mit dem häufigsten natürlichen Isotop <sup>12</sup>C, <sup>1</sup>H, <sup>11</sup>B, <sup>14</sup>N und <sup>16</sup>O. – <sup>[b]</sup> syn/ anti-Isomere. – <sup>[c]</sup> rac/meso-Diastereomere.

außerdem die wenig intensiven  $[M - 29]^+$ -Bruchstückmassen m/z 236, 284 und 288.

Die relativ linienarmen Massenspektren der Verbindungen 2 sind wie die ihrer 3-Sila-Analoga<sup>[6]</sup> durch die Hauptbruchstückmasse m/z 185 [PPh<sub>2</sub><sup>+</sup>] gekennzeichnet. Charakteristisch sind außerdem die [M - 29]<sup>+</sup>-Ionen, für 2a m/z363, für 2d m/z 415 (Basismasse) sowie für das 2b/2c-Gemisch m/z 411. Im Massenspektrum von 2d tritt auch der B<sub>1</sub>-Peak m/z 323 auf, vermutlich entstanden nach Gl. (g) durch Abspalten des C<sub>8</sub>H<sub>14</sub>B-Neutralteilchens aus M<sup>+</sup> (444).



Das Massenspektrum von 4a zeigt ein M<sup>+</sup> (m/z 436) mit 13% relativer Intensität, außerdem eine Basismasse des Bruchstück-Ions AsPh<sub>2</sub><sup>+</sup> (m/z 207). Intensiv, jedoch weniger spezifisch sind die Bruchstückmassen m/z 151 (207 – 56), 137 und 81 sowie 41 (EtBH). Im EI-Massenspektrum der (4b/4c)-Regioisomeren treten ein intensitätsschwaches M<sup>+</sup> (m/z 484), die Basismasse m/z 199 [255 – 56 (EtBO)] sowie die intensiven Bruchstück-Ionen m/z 255 [M<sup>+</sup> – 229 (AsPh<sub>2</sub>)] und 117 auf.

*NMR*: Die NMR-Resonanzen der Gerüstatome der Verbindungen 1 und 2 (<sup>11</sup>B, <sup>13</sup>C, <sup>17</sup>O, <sup>31</sup>P) sind in Tab. 2 zusammengestellt. Alle weiteren NMR-Signale (<sup>1</sup>H, <sup>13</sup>C) von 1 und 2 sowie sämtliche NMR-Daten der Produkte 3 und 4 findet man im experimentellen Teil.

<sup>1</sup>H-NMR: Lage der Signale und Zahl der Protonen des Heterocyclus 1a sind mit dessen Bicyclo[2.2.1]heptan-Struktur vereinbar. Die eq/ax-Protonen-Signale der  $H_2C^5$ - $(\delta = 2.82, 2.36)$  und der Me<sub>2</sub>N<sup>6</sup>-Gruppen (2.55, 2.34) spalten im starren 1a jeweils auf. Aufgrund der Intensitäten der Schlüsselsignale der anti/syn-Isomeren 1d und 1d' {endo/  $exo-Me_2N^6$ -Singuletts ( $\delta = 2.57, 2.40; 2.50, 2.33$ ), (H<sub>2</sub>C<sup>5</sup>)-Dubletts 3.65 (1 H), 3.13 (1 H), 3.27 (2 H)} liegt 1d mit ca. 20% d.e. vor. Die Zuordnung von 1d als syn-9-BBN-Isomer ist durch Vergleich mit den <sup>1</sup>H-NMR-Schlüsselsignalen von 1a möglich. Beim 1b/1b'/1c-Gemisch treten insgesamt drei intensitätsunterschiedliche Signale für die sechs (endo/exo)- $H_2C^5$ -Protonen ( $\delta = 3.48, 3.45, 3.05$ ) auf. – Die <sup>1</sup>H-NMR-Spektren der Verbindungen 2 gestatten wegen verstärkter CH<sub>2</sub>-Abschirmung am tetrakoordinierten B<sup>3</sup>-Atom eindeutig die Unterscheidung der Signale beider B<sup>3,6</sup>-Ethylreste<sup>[23]</sup>. Lediglich die C<sup>4,5</sup>-Ethylprotonen von 2a lassen sich nicht sicher zuordnen.

<sup>11</sup>B-NMR: Die beiden voneinander gut getrennten <sup>11</sup>B-NMR-Signale der Verbindungen **1a–d** gehören zum dreifach ( $\delta = 51-58$ ) und vierfach ( $\delta = 11-15$ ) koordinierten Bor-Atom (Tab. 2)<sup>[23a]</sup>. Dabei treten für die R<sub>2</sub>BO-Gruppierungen der (**1b/1b'/1c**)-Isomeren drei getrennte Resonanzspitzen auf. Das nicht aufgespaltene <sup>11</sup>B-NMR-Signal der  $\geq$ N-BR<sub>2</sub>(O)-Gruppierung weist beim (1d/1d')-Isomerenpaar mit sperriger 1,5-Cyclooctandiyl-Gruppierung auf eine relativ schwache NB-Koordinationsbindung ( $\delta^{11}B = 15.6$ ) hin. – Das <sup>11</sup>B-NMR-Signal des dreifach koordinierten Bor-Atoms (48-53)<sup>[23]</sup> der OPBC=CB-Monocyclen 2a-d ist breit. Das vierfach koordinierte Bor-Atom der  $\geq$ P-BR<sub>3</sub>-Gruppierung tritt bei  $\delta = -5.5$  (2d) bis -12.7 (2a-c) auf. Die Temperaturabhängigkeit dieser <sup>11</sup>B-NMR-Signale wurde nicht untersucht<sup>[23b]</sup>. Die <sup>11</sup>B-Resonanzen der Ph<sub>2</sub>Assubstitutierten 1,2,5-Oxadiborolane 4a-c ( $\delta$  = ca. 55) stimmen ebenfalls mit Literaturdaten gut überein<sup>[4]</sup>.

Tab. 2. Gerüstatom-NMR-Signale der Verbindungen 1 und 2 in CDCl<sub>3</sub> bei  $20\,^{\circ}C^{[a]}$ 

|                                                                         | δ ΕΙ                              |                                    |                                     |                                |                                |                                |
|-------------------------------------------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| $ \begin{bmatrix}                                    $                  | $\delta^{11}B^{1}[b]$             | δ <sup>17</sup> O <sup>2[c]</sup>  | $\delta^{11}B^{3} \left[ d \right]$ | $\delta^{13}C^4$               | $\delta^{13}C^5$               | δ <sup>13</sup> C <sup>7</sup> |
| 1a                                                                      | 13                                | 168.5                              | 56                                  | 45.6                           | 65.3                           | 47.5                           |
| 1b/1b'/1c                                                               | 11<br>12(sh)                      | n.g. <sup>[e]</sup>                | 55<br>53<br>51                      | 45-48                          | 67.9<br>66.6<br>63.2           | 48-45                          |
| 1d/1d'                                                                  | 15                                | 176.8 <sup>[f]</sup><br>164.1      | 58                                  | 46.7 <sup>[f]</sup><br>45.4    | 68.5 <sup>[f]</sup><br>66.4    | 40.7 <sup>[f]</sup><br>34.1    |
| $\begin{bmatrix} 6 & O^{1} & 2 \\ B & P^{2} \\ 1 & 1^{3} \end{bmatrix}$ | δ <sup>17</sup> O <sup>1[C]</sup> | δ <sup>31</sup> P <sup>2</sup> [c] | $\delta^{11}B^{3}[c,d]$             | δ <sup>13</sup> C <sup>4</sup> | δ <sup>13</sup> C <sup>5</sup> | $\delta^{11}B^{6}$ [b]         |
|                                                                         |                                   |                                    |                                     |                                |                                |                                |
| 2a                                                                      | 89.8                              | 83.6                               | -12.3                               | 181                            | 141                            | 51.7                           |
| 2b]<br>2c] [g]                                                          | n.g.[e]                           | 84.8<br>83.0                       | -12.7                               | 185 <sup>[h]</sup><br>178      | 144 [h]<br>142                 | 51.4 <sup>[c]</sup>            |
| 2d                                                                      | 88.6                              | 75.4                               | -5.5                                | 175 <sup>[h]</sup>             | 145 <sup>[h]</sup>             | 52.7                           |

<sup>[a]</sup> Falls nicht anders vermerkt. – <sup>[b]</sup> Halbhöhenbreite  $h_{1/2} > 150 < 300 \text{ Hz.} - {}^{[c]} h_{1/2} > 300 \text{ Hz.} - {}^{[d]} \mathbf{1d/1d'}$  mit ca. 20% d.e. 1d. – <sup>[e]</sup> 2b/2b'/2c mit ca. 20% i.e. 2b'. – {}^{[f]} In [D<sub>8</sub>]Toluol. – {}^{[g]} n.g. = nicht gemessen. – {}^{[h]} In CD<sub>2</sub>Cl<sub>2</sub> bei - 30 °C.

<sup>13</sup>C-NMR: Die <sup>13</sup>C-NMR-Signale der *endo/exo*-Me<sub>2</sub>N-Gruppen im bicyclischen Amin-Tetraorgano-1,3,2-diboroxan **1a** (Tab. 2) sind voneinander getrennt ( $\delta$  = 49.1; 48.1). Dies gilt auch für die Resonanzen der CH<sub>2</sub>- und CH<sub>3</sub>-Gruppen in den *anti/syn*-Ethylresten. Beim (**1b/1b'/1c**)-Isomerengemisch treten die C<sup>5,7</sup>-Gerüstatome als drei, die *endo/exo*-Methylgruppen am N-Atom als sechs voneinander getrennte <sup>13</sup>C-NMR-Signale auf. Auch sämtliche <sup>13</sup>C-NMR-Signale der (**1d/1d'**)-Diastereomeren sind aufgespalten und lassen sich – ausgenommen die <sup>13</sup>C-Resonanzen des C<sub>8</sub>H<sub>14</sub>-Bicyclus – aufgrund des (60:40)-Intensitätsverhältnisses ohne Konfigurationszuordnung miteinander korrelieren.

Die Zuordnung der <sup>13</sup>C-Resonanzen der Phosphan-Triorganoborane (**2a**, **d**) ist eindeutig. Während für die C-Atome beider *P*-Phenylreste von **2a** nur eine Signalspitze auftritt, sind die *ipso*- und *para*-C-Atome von **2d** in jeweils zwei NMR-Signale aufgespalten. Auch für nahezu alle C-Atome des  $C_8H_{14}$ -Rests von 2d lassen sich jeweils zwei Signale beobachten. Für die weiteren C-Atome von 2d findet man nur ein einziges <sup>13</sup>C-NMR-Signal. Im 2b/2c-Gemisch lassen sich an Hand der Intensität der <sup>13</sup>C-NMR-Signale die beiden Regioisomeren mit ca. 20% r.e. 2b voneinander unterscheiden.

Die C-Atome beider Phenylreste der Ph<sub>2</sub>As-Verbindung 4a spalten in jeweils zwei Signale auf. Demgegenüber findet man nur ein <sup>13</sup>C<sup>3</sup>- und ein <sup>13</sup>C<sup>4</sup>-NMR-Signal ( $\delta = 57.1$ ; 46.4), während die CH<sub>2</sub>- und CH<sub>3</sub>-Resonanzen der C-Ethylreste dreifach aufgespalten sind. Im besonders linienreichen Spektrum des Gemischs aus **3b/3c**, **4b/4b'** und **4c** lassen sich nur die Signale der C<sup>3</sup>- und C<sup>4</sup>-Atome sicher zuordnen.

<sup>17</sup>O-NMR: Die <sup>17</sup>O-Kerne<sup>[24]</sup> (Tab. 2) der <sup>17</sup>O-angereicherten Verbindungen **1a**\* ( $\delta = 168.5$ ) und **1d**\*/**1d**'\* ( $\delta =$ 176.8; 164.1) sind deutlich stärker ( $\Delta^{17}O = ca. 40$ ) abgeschirmt als die O-Atome der nicht komplexierten organosubstituierten 1,2,5-Oxadiborolane ( $\delta = ca. 210$ )<sup>[4]</sup>. Im **1d**\*/ **1d**'\*-Gemisch ist der intensivere (60%), stärker entschirmte <sup>17</sup>O-Kern (176.8) vermutlich der syn-C<sub>8</sub>H<sub>14</sub>-Verbindung **1d**\* zuzuordnen, da die Umgebung des O-Atoms im anti-Isomer **1d**'\* (164.1) mit der in **1a**\* (168.5) besser übereinstimmt. Die monocyclischen Verbindungen **2a** und **2d** haben relativ breite, wegen  $J(^{31}P^{17}O)$ -Kopplung nicht aufgespaltene <sup>17</sup>O-Resonanzen bei  $\delta = 88-90$ .

<sup>31</sup>P-NMR: Die <sup>31</sup>P-Kerne der OPBC=CB-Heterocyclen 2 (Tab. 2) mit koordinativer PB-Bindung ( $\delta = 85 - 75$ ) sind wenig mehr abgeschirmt als die Phosphor-Atome der bekannten (Boryloxy) diphenylphosphane ohne (94.5 - 96) bzw. mit (97.7, br.) am Phosphor-Atom koordiniertem Boran-Molekül<sup>[25]</sup>. Zusätzliche Vergleichswerte gibt es für die Verbindungen 2 noch nicht<sup>[26,27]</sup>. Sämtliche <sup>31</sup>P-NMR-Signale der Heterocyclen 2 sind wegen der partiell relaxierten skalaren Kopplung  ${}^{1}J({}^{31}P{}^{11}B){}^{[28]}$  deutlich verbreitert. Die im äquimolaren Verhältnis auftretenden Regioisomeren (2b, **2c**) mit Ethyl- und Phenylgruppen an den C<sup>4,5</sup>-Atomen lassen sich <sup>31</sup>P-NMR-spektroskopisch zwar voneinander unterscheiden, aber wie bei den 6-Sila-Analoga<sup>[6]</sup> nicht zuordnen. In 2d mit einem relativ stark abgeschirmeten Phosphor-Atom ( $\delta = 75$ ) ist die PB-Koordinationsbindung geschwächt, ganz in Übereinstimmung mit der deutlichen Entschirmung des <sup>11</sup>B-Kerns ( $\delta^{11}B = -5.5$ ).

#### Kristallstrukturanalysen von 1a und 2d

Die Abb. 1 und 2 zeigen die Molekülstrukturen der Verbindungen 1a und 2d im Kristall mit ausgewählten Atomabständen und -winkeln. Tab. 3 enthält die Angaben zur jeweiligen Kristallstrukturanalyse<sup>[29]</sup>.

Der Aufbau des Donor-Akzeptor-Moleküls 1a in der 1*R*,4*S*-Konfiguration (Abb. 1) und dessen Packung in der Elementarzelle (Abb. 3) ähnelt weitestgehend dem der (Me<sub>2</sub>Si)<sup>3</sup>-Verbindung I<sup>[6]</sup> mit analogem Bicyclo[2.2.1]-heptan-Gerüst. Die korrespondierenden Atomabstände und -winkel der Bicyclen 1a und I sind nahezu identisch. Die koordinative NB-Bindungslänge in 1a (1.703 Å) ist zwar ziemlich groß, doch ist die NB-Bindung in I<sup>[6]</sup> (1.720 Å) noch etwas mehr aufgeweitet  $^{[30]}$ .



Abb. 1. Struktur des (1R,4S)-1,3,4,7,7-Pentaethyl-6,6-dimethyl-2oxa-6-azonia-3-bora-1-boratabicyclo[2.2.1]heptans [(RS)-1**a**] im Kristall mit Atomnumerierung, ausgewählten Atomabständen [Å] und Winkeln [°]: P-O 1.619(2), P-B1 2.013(2), C1-B1 1.654(3), C1-C2 1.357(3), C2-B2 1.558(4), O-B2 1.404(3); O-P-B1 102.8(1), P-B1-C1 94.6(1), B1-C1-C2 121.0(2), C1-C2-B2 121.0(2), C2-B2-O 118.0(2), B2-O-P 120.1(2)



Abb. 2. Struktur des 3,3-(1,5-Cyclooctandiyl)-4,5,6-triethyl-2,2-diphenyl-1-oxa-2-phosphonia-6-bora-3-borata-4-cyclohexens (**2d**) im Kristall mit Atomnumerierung, ausgewählten Atomabständen [Å] und Winkeln [°]: O-B1 1.492(4), N-B1 1.703(4), N-C3 1.518(4), C3-C2 1.559(4), C2-B2 1.605(5), O-B2 1.351(4), C2-C1 1.580(4), C1-B1 1.658(5); B1-O-B2 107.8(2), O-B2-C2 108.3(3), B2-C2-C3 104.4(2), C2-C3-N 106.7(2), C3-N-B1 101.5(2), N-B1-O 101.4(2); Ebene B1-O-B2-C2/Ebene B1-C1-C2 53; Ebene B1-N-C3-C2/Ebene B1-O-B2-C2 71

Verbindung 2d (Abb. 2) ist ein neuartiger cycloenantiotoper OPBC = CB-Heterocyclus mit spiegelbildlicher Paaranordnung in der Elementarzelle (Abb. 4). Der OPBC=CB-Ring von 2d mit koordinativer PB-Bindung hat eine ungewöhnliche Konformation: Die Bor- und Kohlenstoff-Atome sind annähernd in einer Ebene, aus der die Phosphor- und Sauerstoff-Positionen um +1.47 bzw. +0.85 Å heraustreten.

| Tab. 3. | Kristallstrukturdaten | von | 1 a | und | 2 d |
|---------|-----------------------|-----|-----|-----|-----|
|---------|-----------------------|-----|-----|-----|-----|

|                                                                  | la                                                | 2d                                                |
|------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Summenformel                                                     | C <sub>15</sub> H <sub>33</sub> B <sub>2</sub> NO | C <sub>28</sub> H <sub>39</sub> B <sub>2</sub> OP |
| Molmasse                                                         | 265.1                                             | 444.2                                             |
| Kristallgröße [mm]                                               | 0.36 x 0.65 x 0.68                                | 0.22 x 0.50 x 0.72                                |
| Kristallfarbe                                                    | farblos                                           | farblos                                           |
| Kristallsystem                                                   | orthorhombisch                                    | triklin                                           |
| Raumgruppe (Nr.)                                                 | $P2_{1}2_{1}2_{1}$ (19)                           | P1 (2)                                            |
| a [Å]                                                            | 8.280(1)                                          | 10.092(1)                                         |
| b [Å]                                                            | 13.073(1)                                         | 11.261(1)                                         |
| c [Å]                                                            | 15.853(1)                                         | 12.182(1)                                         |
| α [°]                                                            | 90.0                                              | 98.48(1)                                          |
| β [°]                                                            | 90.0                                              | 103.43(1)                                         |
| γ [°]                                                            | 90.0                                              | 98.16(1)                                          |
| V [Å <sup>3</sup> ]                                              | 1716.0                                            | 1309.3                                            |
| Z                                                                | 4                                                 | 2                                                 |
| $d_x [g \cdot cm^{-3}]$                                          | 1.03                                              | 1.13                                              |
| $\mu$ (Cu-K <sub><math>\alpha</math></sub> ) [cm <sup>-1</sup> ] | 4.24                                              | 10.27                                             |
| F(000) [e]                                                       | 592                                               | 480                                               |
| Т                                                                | Raumtemp.                                         | Raumtemp.                                         |
| Diffraktometer                                                   | Nonius CAD4                                       | Nonius CAD4                                       |
| Wellenlänge λ [Å]                                                | 1.54178                                           | 1.54178                                           |
| Meßmethode                                                       | ω/2θ                                              | ω/2θ                                              |
| [(sinθ)/λ] <sub>max</sub> [Å <sup>-1</sup> ]                     | 0.63                                              | 0.63                                              |
| Beugungsintensitäten                                             |                                                   |                                                   |
| gemessen                                                         | 3872 $(\pm h, +k, +l)$                            | 5549 ( $\pm h, \pm k, +l$ )                       |
| unabhängig                                                       | 2055                                              | 5530                                              |
| beobachtet [I>2.0o(I)]                                           | 1907                                              | 4777                                              |
| Strukturlösung                                                   | Direkte Meho                                      | de                                                |
| verfeinerte Parameter                                            | 172                                               | 289                                               |
| $R/R_w [w=1/\sigma^2(F_o)]$                                      | 0.063 / 0.089                                     | 0.059/0.089                                       |
| max. Restelektronendichte [eÅ-3]                                 | 0.17                                              | 0.30                                              |

Die PO-, OB- und C=C-Abstände sowie die Bindungswinkel in **2d** entsprechen weitestgehend bekannten Werten<sup>[31]</sup>. Die koordinative PB-Bindung (2.013 Å) ist im Vergleich mit der nichtcyclischer Phosphan-Borane<sup>[32]</sup> (1.901 Å) aufgeweitet, jedoch ein wenig verkürzt gegenüber der im Ph<sub>2</sub>P-B(Et<sub>2</sub>)C(Et)=CPh-Vierring (2.107 Å)<sup>[33]</sup>. Die sterische Wechselwirkung des *B*-1,5-Cyclooctandiyl-Rests<sup>[34]</sup> mit den *P*-Phenylgruppen könnte zur Verlängerung der PB-Bindung in **2d** beitragen. Mit den PB-Abständen der monomeren<sup>[35]</sup> und dimeren nichtcyclischen<sup>[36]</sup> sowie cyclischen<sup>[28]</sup> organosubstituierten Phosphanylborane ist der PB-Abstand von **2d** wegen des unterschiedlichen Verbindungstyps allerdings nicht vergleichbar.



Abb. 3. Packung von 1a in der Elementarzelle  $c \cdot \sin\beta$   $c \cdot \sin\beta$   $f = \frac{1}{2}$   $f = \frac{1}$ 

Abb. 4. Packung der cycloenantiotopen Moleküle 2d in der Elementarzelle

## **Experimenteller Teil**

Sämtliche Reaktionen und Messungen wurden bei striktem Ausschluß von Luftsauerstoff und Feuchtigkeit unter Argon als Schutzgas durchgeführt. – C-, H-, As-, B-, N- und P-Werte: Firma Dornis und Kolbe, Mülheim an der Ruhr. – DSC-Analysen<sup>[37]</sup>: DuPont 9900 mit einer Vorrichtung für Einwaagen unter striktem Luft- und Feuchtigkeitsausschluß. – IR: Perkin-Elmer 297. – MS<sup>[38]</sup>: EI-MS (70 eV) mit Finnigan MAT CH5. – <sup>1</sup>H-NMR<sup>[39]</sup>: Bruker AC 200. – <sup>11</sup>B-NMR<sup>[39]</sup>: Bruker AC 200 (64.2 MHz),  $\delta^{11}B = 0$ , Et<sub>2</sub>O · BF<sub>3</sub> extern. – <sup>13</sup>C-NMR (<sup>1</sup>H-entkoppelt)<sup>[39]</sup>: Bruker AC 200 (50.2 MHz), SiMe<sub>4</sub> extern. – <sup>17</sup>O-NMR<sup>[40]</sup>: Bruker WH 400 (50.8 MHz), reines H<sub>2</sub>O extern. – <sup>31</sup>P-NMR (<sup>1</sup>H-entkoppelt)<sup>[39]</sup>: Bruker AC 200 (81 MHz),  $\delta^{31}P = 0$ , H<sub>3</sub>PO<sub>4</sub> (85proz. in H<sub>2</sub>O) extern. – Kristallstrukturanalyse<sup>[29]</sup> von **1a**, **2d**, Abb. 1–4, Tab. 3.

Ausgangsverbindungen:  $A-D^{[4]}$  und  $[Me_2NCH_2]Br^{[41]}$  wurden nach Literaturvorschrift hergestellt. – ClPPh<sub>2</sub> (Johnson Matthey,

#### Organosubstituierte CBOBCCN-Verbindungen

Schutzgas auf.

1,3,4,7,7-Pentaethyl-6,6-dimethyl-2-oxa-6-azonia-3-bora-1-boratabicyclo[2.2.1]heptan (1a): 4.12 g (30 mmol) [Me<sub>2</sub>NCH<sub>2</sub>]Br gibt man bei Raumtemp. in ca. 20 min zu 7.32 g (30 mmol) A in 80 ml THF (Temperaturanstieg auf ca. 30°C) und erhitzt 4 h unter Rückfluß. Nach Abfiltrieren von 3.55 g (ber. 3.54 g) verunreinigtem KBr (gef. 61.05% Br, ber. 67.22% Br) wird i. Vak. (12 Torr) eingeengt und bei Raumtemp. getrocknet (0.001 Torr). Man erhält 6.42 g (81%) farbloses, leicht viskoses 1a mit Sdp. 87°C/0.001 Torr und Schmp. 42°C (aus Pentan); DSC: Schmp. 41.5°C; Zers.-P. (exotherm):  $\geq 100 \,^{\circ}\text{C.} - \text{IR} \, (\text{CCl}_4)$ :  $\tilde{\nu} = 1375 \, \text{cm}^{-1} \, (\text{Me}_2\text{N}), 1340, 1322,$ 1295 (BOB), ca. 1200 – ca. 900 (Gerüst). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 0.51$  (CH<sub>2</sub>B<sup>1</sup>), 0.93 (CH<sub>3</sub>CH<sub>2</sub>B<sup>1</sup>), 0.97 (CH<sub>3</sub>CH<sub>2</sub>B<sup>3</sup>), 1.7-1.1  $(CH_2C^4)$ , 0.89  $(CH_3CH_2C^4)$ , 2.82, 2.36  $(H_2C^5)$ , 2.55, 2.34  $(Me_2N^6)$ , 1.7 - 1.1 (CH<sub>2</sub>C<sup>7</sup>), 0.79, 0.77 (CH<sub>3</sub>CH<sub>2</sub>C<sup>7</sup>). - MS-Daten und Gerüstatom-Resonanzen Tab. 1, 2; weitere <sup>13</sup>C-NMR-Daten (CDCl<sub>3</sub>) von 1a:  $\delta = ca. 11.3 [CH_2B^1 (1C!)]; 9.4 (CH_3CH_2B^1), 7.3 (CH_3-1); 7.3 (CH_3-1);$ CH<sub>2</sub>B<sup>3</sup>); 20.3, 11.5 (EtC<sup>4</sup>); 49.1, 48.1 (Me<sub>2</sub>N); 27.3, 21.5 (CH<sub>2</sub>C<sup>7</sup>); 11.1, 10.0 ( $CH_3CH_2C^7$ ). - Kristallstrukturanalyse<sup>[29]</sup> Abb. 1, 3, Tab. 3. - C<sub>15</sub>H<sub>33</sub>B<sub>2</sub>NO (265.1): ber. C 67.96, H 12.54, B 8.15, N 5.28; gef. C 66.28, H 11.96, B 8.21, N 5.35.

1,3,4,syn/anti-7-Tetraethyl-6,6-dimethyl-anti/syn-7-phenyl-2-oxa-6-azonia-3-bora-1-boratabicyclo[2.2.1]heptane (1b/1b') und 1,3,7,7-Tetraethyl-6,6-dimethyl-4-phenyl-2-oxa-6-azonia-3-bora-1-boratabicyclo[2.2.1]heptan (1c): 4.04 g (29.3 mmol) [Me2NCH2]Br gibt man in ca. 5 min zur Lösung von 8.62 g (29.3 mmol) B/C-Gemisch in ca. 100 ml THF (Temperaturanstieg auf ca. 30°C). Nach 4stdg. Erhitzen unter Rückfluß werden 4.0 g (ber. 3.48 g) verunreinigtes KBr (gef. 62.7% Br) abfiltriert, das Lösungsmittel wird i. Vak. (14 Torr) abdestilliert und bei 0.001 Torr der gelbliche, viskose Rückstand getrocknet. Man erhält 8.54 g (93%) Rohgemisch aus 1b/1b' und 1c (<sup>13</sup>C-NMR), von dem i. Vak. (Bad  $\leq 160^{\circ}$ C) ca. zwei Drittel mit Sdp. 117-120°C/0.001 Torr abdestilliert werden können; Rückstand: dunkelbraune, viskose Flüssigkeit. - IR (THF):  $\tilde{\nu} = 1595$ , 1570 cm<sup>-1</sup> (Ph). - <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = ca. 0.4 (EtB<sup>1</sup>)$ , 1.2 (EtB<sup>3</sup>), 6.95-7.43 (Ph<sup>4,7</sup>), 3.48 (ca. 30%), 3.45 (ca. 50%), 3.05 (ca. 20%) (H<sub>2</sub>C<sup>5</sup>N). – MS-Daten und Gerüstatom-Resonanzen Tab. 1, 2. – Weitere <sup>13</sup>C-NMR-Daten (CDCl<sub>3</sub>) des 1b/1b'/1c-Gemischs:  $\delta = 49.8, 48.7, 47.9, 47.7, 46.4, 45.5$  (Me<sub>2</sub>N<sup>6</sup>). - C<sub>19</sub>H<sub>33</sub>B<sub>2</sub>NO (313.1): ber. C 72.89, H 10.62, B 6.91, N 4.47; gef. C 72.14, H 10.95, B 6.20, N 4.75.

anti/syn-1,7-(1,5-Cyclooctandiyl)-3,4,7-triethyl-6,6-dimethyl-2oxa-6-azonia-3-bora-1-boratabicyclo[2.2.1]heptane (1d/1d') aus D mit [Me2NCH2]Br bei Raumtemp.: Eine Lösung von 3.22 g (10.8 mmol) D in 25 ml THF tropft man in ca. 40 min zu 1.5 g (10.9 mmol) [Me2NCH2]Br in 10 ml THF (leichte Wärmeentwicklung). Nach 3stdg. Rühren bei Raumtemp. wird KBr abfiltriert und das Filtrat i. Vak. (10 bzw. 0.001 Torr) bei Raumtemp. vollständig eingeengt. Man erhält 3.18 g (93%) farbloses, viskoses 1d/1d'  $(\delta^{11}B = 56.15)$ , das langsam kristallisiert; Schmp. 67-68°C (DSC: 65.5°C;  $\leq 120$ °C: exotherm, Zers.). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>) mit ca. 20% d.e. eines Isomers; zugeordnet sind:  $\delta = 2.25 - 1.20$  (C<sub>8</sub>H<sub>14</sub>);  $0.83 \text{ (EtB}^3$ ); [3.65 (d), 3.13 (d) (60%); 3.27 (40%) (H<sub>2</sub>C<sup>5</sup>)]; [2.57, 2.40 (60%), 2.50, 2.33 (40%); H<sub>3</sub>CN<sup>6</sup>]; 0.96, 0.87, 0.62  $(H_3C^{1,4,7})$ . – MS-Daten und Gerüstatom-Resonanzen Tab. 1, 2; weitere <sup>13</sup>C-NMR-Daten (CDCl<sub>3</sub>;  $-30^{\circ}$ C) von 1d/1d' (60:40):  $\delta = 26.6/26.8$  (CHB<sup>1</sup>); 9.5 (CH<sub>2</sub>B), 8.5, 9.2 (CH<sub>3</sub>CH<sub>2</sub>B<sup>3</sup>); 11.4, 11.1/12.7, 10.4 (CH<sub>3</sub>CH<sub>2</sub>C<sup>4,7</sup>);  $[47.06, 44.3/47.12, 45.0 (Me_2N^6)]; [32.2, 31.4, 30.7, 30.1, 28.4, 27.8,$ 

27.7, 27.3, 26.5, 26.3, 25.8, 25.0, 24.9, 24.5, 22.1, 21.9 ( $\beta$ , $\gamma$ -CH<sub>2</sub>, CH<sub>2</sub> C<sup>4.7</sup>)]; 36.2/32.2 (CHC<sup>7</sup>). - C<sub>19</sub>H<sub>37</sub>B<sub>2</sub>NO (317.1): ber. C 71.96, H 11.76, B 6.81, N 4.42; gef. C 71.96, H 11.56, B 6.79, N 4.38.

#### Organosubstituierte OPBC=CB-Verbindungen (2)

3,3,4,5,6-Pentaethyl-2,2-diphenyl-1-oxa-2-phosphonia-6-bora-3borata-4-cyclohexen (**2a**): 3.3 g (15 mmol) ClPPh<sub>2</sub> tropft man in ca. 10 min zu 3.7 g (15 mmol) **A** in 50 ml THF (Temperaturanstieg auf 28 °C), wobei KCl ausfällt. Nach 4stdg. Erhitzen unter Rückfluß werden 0.9 g KCl abfiltriert, und das Filtrat wird i. Vak. (12 Torr) eingeengt. Man erhält 5.8 g (99%) viskoses **2a**. – IR (unverdünnt):  $\tilde{v} = 1525 \text{ cm}^{-1}$  (C=C). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = [7.74 (4 \text{ H}), 7.48$ (6H) (Ph<sub>2</sub>P)], 0.74 (CH<sub>2</sub>B<sup>3</sup>), 0.79 (CH<sub>3</sub>CH<sub>2</sub>B<sup>3</sup>), [2.43, 2.39 (CH<sub>2</sub>C<sup>4.5</sup>)], 1.05, 1.02 (CH<sub>3</sub>CH<sub>2</sub>C<sup>4.5</sup>), 1.31 (CH<sub>2</sub>B<sup>6</sup>), 1.11 (CH<sub>3</sub>CH<sub>2</sub>B<sup>6</sup>). – MS-Daten und Gerüstatom-Resonanzen Tab. 1, 2. – Weitere <sup>13</sup>C-NMR-Daten (CDCl<sub>3</sub>):  $\delta = \{131.7 [J_{PC} = 21.7 \text{ Hz}]$  (*i*), 131.7 [10.9] (*o*), 128.3 [9.7] (*m*), 131.4 (*p*) (Ph<sub>2</sub>P<sup>2</sup>)}; 13.2, 11.5 [9.0] (Et<sub>2</sub>B<sup>3</sup>); 25.7 [11.3], 16.3 [1.7] (EtC<sup>4</sup>); 23.5 [1.0], 14.7 (EtC<sup>5</sup>); ca. 12.8, 7.7 (EtB<sup>6</sup>). – C<sub>24</sub>H<sub>35</sub>B<sub>2</sub>OP (392.1): ber. C 73.53, H 9.00, B 5.51, P 7.91; gef. C 73.35, H 8.81, B 5.72, P 7.99.

3,3,5,6-Tetraethyl-2,2,4-triphenyl-1-oxa-2-phosphonia-6-bora-3borata-4-cyclohexen (2b) und 3,3,4,6-Tetraethyl-2,2,5-triphenyl-1oxa-2-phosphonia-6-bora-3-borata-4-cyclohexen (2c): 6.18 g (28 mmol) ClPPh<sub>2</sub> tropft man in ca. 10 min zur Lösung von 8.24 g (28 mmol) B/C-Gemisch in 60 ml THF (Temperaturanstieg auf ca. 34°C). KCl fällt aus. Nach ca. 4stdg. Erhitzen unter Rückfluß filtriert man 2.76 g (ber. 2.09 g) verunreinigtes KCl ab, destilliert das Lösungsmittel i. Vak. (14 Torr) ab. trocknet den Rückstand bei 40°C/0.001 Torr und erhält 11.21 g (91%) gelbes, hochviskoses 2b/ **2c**-Gemisch (<sup>31</sup>P-NMR: ca. 1:1). – IR (THF):  $\tilde{v} = 1593$ , 1569 cm<sup>-</sup> (Ph), 1520 (C=C). - <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = [7.78 (4 \text{ H}), 7.56 (6 \text{ H})]$ (Ph<sub>2</sub>P)], ca. 0.6 (CH<sub>2</sub>B<sup>3</sup>), ca. 0.8 (CH<sub>3</sub>CH<sub>2</sub>B<sup>3</sup>), [2.19, 2.03 (EtC<sup>4,5</sup>)],  $[7.27, 7.01, 6.83 (PhC^{4,5})], 1.38 (CH_2B^6), 1.12 (CH_3CH_2B^6). - MS-$ Daten und Gerüstatom-Resonanzen Tab. 1, 2. – Weitere <sup>13</sup>C-NMR-Daten (CD<sub>2</sub>Cl<sub>2</sub>,  $-50^{\circ}$ C) von **2b/2c**:  $\delta = \{131.19 | J_{PC} = 48.0 \}$ Hz], 131.16 [48.7] (i), 131.9 [11.2], 131.6 [11.2] (o), 128.5 [10.1] (m),  $131.7 (p) (Ph_2P^2)$ , ca. 13, 11.0 [9.0] (Et<sub>2</sub>B<sup>3</sup>); 27.9 [10.6], 16.2 [1.7] (EtC<sup>4</sup>); {147.4 [12.0], 146.6 [1.5] (*i*); 128.7, 125.9 (*o*); 127.7, 127.1 (*m*);  $124.7, 124.1 (p) (PhC^{4,5})$ , 25.6 [1.6], 14.1 (EtC<sup>5</sup>); ca. 14.5, ca. 13.5; 7.3, 7.6 (EtB<sup>6</sup>).  $- C_{28}H_{35}B_2OP$  (440.2): ber. C 76.40, H 8.02, B 4.91, P 7.04; gef. C 76.82, H 8.16, B 4.70, P 6.81.

3,3-(1,5-Cyclooctandiyl)-4,5,6-triethyl-2,2-diphenyl-1-oxa-2-phosphonia-6-bora-3-borata-4-cyclohexen (2d): 5.73 g (26 mmol) ClPPh<sub>2</sub> werden in ca. 10 min zu 7.74 g (26 mmol) D in 60 ml THF getropft (Temperaturanstieg bis 32 °C). Nach ca. 4stdg. Erhitzen unter Rückfluß filtriert man 2.47 g verunreinigtes KCl ab, entfernt das Lösungsmittel i. Vak. (12 Torr), trocknet bei 50°C/0.001 Torr und gewinnt 10.3 g (90%) kristallincs 2d mit Schmp. 115°C (aus Pentan). - IR (THF):  $\tilde{v} = 1529$  cm<sup>-1</sup> (C=C). - Raman (unverdünnt):  $\tilde{v} = 1537 \text{ cm}^{-1}$  (C=C).  $- {}^{1}\text{H-NMR}$  (CDCl<sub>3</sub>):  $\delta = [7.64 (4 \text{ H}), 7.40 \text{ H})$ (6 H) (Ph<sub>2</sub>P)], [1.26 ( $\alpha$ -C), 2.2-1.4 ( $\beta$ , $\gamma$ -C), ca. 2.3 (H<sub>2</sub>CC<sup>4,5</sup>), 0.96, 0.32 (H<sub>3</sub>CCH<sub>2</sub>C<sup>4,5</sup>). – MS-Daten und Gerüstatom-Resonanzen  $[J_{PC} = 39.0 \text{ Hz}], 135.2 [43.5]$  (*i*), 131.6 [11.7] (*o*), 128.4 [9.2] (*m*), 131.4 [1.8], 130.4 [1.4] (p) (Ph<sub>2</sub>P)}; 32.5, 23 ( $\alpha$ -C); 36.5 [7.0], 32.4 (2 C), 30.7 [15.6] ( $\beta$ -C); 24.8, 24.4 ( $\gamma$ -C) (C<sub>8</sub>H<sub>14</sub>B); 24.6 [15.4], 14.2 [5.3] (EtC<sup>4</sup>); 23.2 [3.0], 14.9 [3.2] (EtC<sup>5</sup>); 13.2 [5.0], 7.6 (EtB<sup>6</sup>). -Kristallstrukturanalyse<sup>[29]</sup> Abb. 2, 4, Tab. 3.  $-C_{28}H_{39}B_2OP$  (444.2): ber. C 75.71, H 8.85, P 6.97; gef. C 75.96, H 8.83, P 6.86.

## Organosubstituierte $\overrightarrow{BOBC=C}$ - (3) und $\overrightarrow{BOBCC}$ -Verbindungen (4)

3-(Diphenylarsanyl)-2,3,4,4,5-pentaethyl-1,2,5-oxadiborolan (4a):Zu 3.40 g (14 mmol) in 50 ml THF gelöstem A tropft man in 10min eine Lösung von 3.66 g (14 mmol) ClAsPh<sub>2</sub> in 5 ml THF (leichter Temperaturanstieg). KCl fällt sofort aus. Nach 4stdg. Erhitzen unter Rückfluß filtriert man 1.13 g verunreinigtes KCl (gef. Cl 44.0; ber. 47.6) ab, entfernt das Lösungsmittel i. Vak. (14; 0.001 Torr; Bad  $\leq 40$  °C) und erhält 5.98 g (99%) trübes, viskoses **4a** ( $\delta^{11}B = 59.7$ ), das aus Heptan kristallisiert; Schmp. 56 – 57 °C. – IR (THF):  $\tilde{v} = 1578$  cm<sup>-1</sup> (Ph<sub>2</sub>As). – MS, *m/z* (%): 436 [B<sub>2</sub>, M<sup>+</sup>] (13), 207 [M<sup>+</sup> – AsPh<sub>2</sub>] (100), 151 (88), 137 (38), 95 (22), 81 (49), 69 (41), 55 (29), 41 (74). – <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 7.64$  (2H), 7.58 (2H), 7.41 (3H), 7.31 (3H), 2.15 (1H), 1.91 (2H), 1.86 (1H), 1.64 (1H), 1.44 (1H); 1.36, 0.98, 0.59 (9H); ca. 0.7 (5H); 0.6, 0.45 (2H); 0.87 (3H). – <sup>11</sup>B-NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 59.9$  (*h*<sub>1/2</sub> = 780 Hz). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = [139.2, 136.0$  (*i*), 138.4, 133.8 (*o*), 128.3, 128.1 (*m*), 128.9, 127.7 (*p*) (Ph<sub>2</sub>As)]; 57.1 (C<sup>3</sup>); 46.4 (C<sup>4</sup>); 27.3, 26.1, 22.1 (CH<sub>2</sub>C<sup>3.4</sup>); 13.6, 12.5, 11.1 (CH<sub>3</sub>CH<sub>2</sub>C<sup>3.4</sup>); 11.9, 7.3, 6.9 (EtB<sup>2.5</sup>). – C<sub>24</sub>H<sub>35</sub>AsB<sub>2</sub>O (436.1): ber. C 66.10, H 8.08, As 17.17; gef. C 66.20, H 8.00, As 17.10.

1-(Diphenylarsanyl)-2,2,3,5-tetraethyl-2,5-dihydro-4-phenyl-1,2,5oxoniadiboratol (3b), 1-(Diphenylarsanyl)-2,2,4,5-tetraethyl-2,5-dihydro-3-phenyl-1,2,5-oxoniadiboratol (3c), rac/meso-3-(Diphenylarsanyl)-2,3,4,5-tetraethyl-4-phenyl-1,2,5-oxadiborolane (4b/4b') und (R/S)-3-(Diphenylarsanyl)-2,4,4,5-tetraethyl-3-phenyl-1,2,5-oxadiborolan (4c): Die Lösung von 3.65 g (14 mmol) ClAsPh<sub>2</sub> in 5 ml THF tropft man in 10 min zu 4.05 g (14 mmol) B/C-Gemisch in 50 ml THF (Temperaturanstieg auf ca. 25°C). Ein fein verteilter Niederschlag fällt aus. Nach 4stdg. Erhitzen unter Rückfluß filtriert man 1.35 g verunreinigtes KCl (gef. Cl 42.3; ber. 47.6) ab, destilliert das Lösungsmittel i. Vak. (14; 0.001 Torr; Bad ≤40°C) ab und gewinnt 6.56 g (98%) gelbes, viskoses, leicht trübes ca. 1:1-Gemisch aus 3b/3c ( $\delta^{11}B = 35.8$ ) sowie 4b/4b', 4c ( $\delta^{11}B = 52.6$ ). - Nach 30min. Erwärmen auf 80°C besteht das Gemisch aus etwa 75% 4b/ **4b'**, **4c** (58.2) und etwa 25% **3b/3c** (33.7). – IR (THF):  $\tilde{v} = 1595$  $cm^{-1}$  (C=CPh), 1578 (Ph<sub>2</sub>As). - MS, m/z (%): 484 [M<sup>+</sup>, B<sub>2</sub>] (<1),  $255 [M^+ - Ph_2As]$  (43), 199  $[B_1, 255 - EtBO]$  (100), 117 (46). -**4b/4b'** und **4c**: <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 7.81 - 6.84$  (15H), 2.45 (1H), 2.1 (2H), 1.57 (1H), 1.36 (3H), 1.3-0.9 (6H), 0.85-0.6 (6H), 0.48 (1 H).  $-{}^{11}$ B-NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta = 59.3$  ( $h_{1/2} = 900$  Hz).  $-{}^{13}$ C-NMR (CDCl<sub>3</sub>):  $\delta = 143 - 125$  (Ph<sub>2</sub>As, PhC<sup>3,4</sup>); 64.8, 59.9, 55.5, 47.7 (C<sup>3,4</sup>, br.); 31.8, 30.6, 29.0, 27.7, 26.2 (CH<sub>2</sub>C<sup>4</sup>); 22.7, 21.6, 20.4 (CH<sub>2</sub>C<sup>3</sup>); 14.1, 13.9, 12.0, 11.3, 10.8, 10.6 (CH<sub>3</sub>CH<sub>2</sub>C<sup>3,4</sup>); ca. 13.9, ca. 12.5  $(CH_2B^{2,5}; 7.8, 7.6, 7.04, 7.0 (CH_3CH_2B^{2,5}))$ . -  $C_{28}H_{35}AsB_2O$  (484.1): ber. C 69.47, H 7.29, As 15.47, B 4.46; gef. C 67.98, H 7.51, As 14.53, B 4.00.

- <sup>[1]</sup> [<sup>1a]</sup> 111. Mitteilung über Borverbindungen. 110. Mitteilung: R. Köster, R. Kucznierz, W. Schüßler, D. Bläser, R. Boese, *Liebigs Ann. Chem.* **1993**, 189–201.
- <sup>[2]</sup> Jetzige Adresse von G. M.: Universität Konstanz, Fakultät für Chemie, Universitätsstraße 10, D-78464 Konstanz.
- <sup>[3]</sup> R. Köster, G. Seidel, B. Wrackmeyer, Chem. Ber. 1993, 126, 319-330.
- <sup>[4]</sup> R. Köster, G. Seidel, Chem. Ber. 1992, 125, 627-636.
- <sup>[5]</sup> <sup>[5a]</sup> R. Köster, G. Seidel, B. Wrackmeyer, *Chem. Ber.* 1991, *124*, 1003-1016. <sup>[5b]</sup> R. Köster, G. Seidel, B. Wrackmeyer, K. Horchler, *Chem. Ber.* 1990, *123*, 1253-1260.
- <sup>[6]</sup> R. Köster, G. Seidel, G. Müller, Chem. Ber. 1991, 124, 1017-1023.
   <sup>[7]</sup> [<sup>7a]</sup> R. Köster, Lewisbase-Tetraorganodiboroxane in Methoden
- [7] [7a] R. Köster, Lewisbase-Tetraorganodiboroxane in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1983, Bd. XIII/3b (Hrsg.: R. Köster), S. 620 – 621. – <sup>[7b]</sup> B. Wrackmeyer, R. Köster, Analytik der Lewisbase-Organobor-Sauerstoff-Verbindungen in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1984, Bd. XIII/3c (Hrsg.: R. Köster), S. 534–542, speziell S. 537, 541. – <sup>[7e]</sup> M. Yalpani, J. Serwatowski, R. Köster, Chem. Ber. 1989, 122, 3–7.
- <sup>[8]</sup> [<sup>8a</sup>] R. Köster, G. Seidel, 2-Ammoniak–Tetraethyl-2,5-dihydro-1,2,5-oxadiborol aus Tetraethyl-2,5-dihydro-1-(trimethylsilyl)-1,2,5-azadiborol mit H<sub>2</sub>O, **1984**, unveröffentlicht. <sup>[8b]</sup> R. Kö-ter C. Seidel D. Pläer P. Bear Menuschiet in Verbenstein Verbenstein P.
- ster, G. Seidel, D. Bläser, R. Boese, Manuskript in Vorbereitung.
   <sup>[9] [9a]</sup> R. Köster, Lewisbase-Triorganodiboroxane in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1983, Bd. XIII/3b (Hrsg.: R.

2219

Köster), S. 621 - 623.  $- {}^{[9b]}$  Et<sub>2</sub>BOB(Et)OC=N(CH<sub>2</sub>)<sub>4</sub>CH<sub>2</sub> aus  $\epsilon$ -Caprolactam mit Et<sub>3</sub>B, vgl. Lit.<sup>[1]</sup> <sup>[10]</sup> (<sup>10a]</sup> R. Köster, *Lewisbase* – 1,3-Diorgano-1,3-dioxy-diboroxane in

- Methoden Org. Chem. (Houben-Weyl) 4. Aufl., **1983**, Bd. XIII/ 3b (Hrsg.: R. Köster), S. 623-624. <sup>[10b]</sup> W. Kliegel, J. Orga-Activity of the second second
- 1990, 68, 1791 1796; Chem. Abstr. 1990, 113, 231439.
  <sup>[11]</sup> <sup>[11a]</sup> M. Yalpani, R. Köster, R. Boese, Chem. Ber. 1989, 122, 19–24. <sup>[11b]</sup> M. Yalpani, R. Boese, R. Köster, Chem. Ber. 1989, 122, 1231–1236.
- <sup>[12]</sup> K. Niedenzu, H. Nöth, J. Serwatowska, J. Serwatowski, Inorg. Chem. 1991, 30, 3248-3254.
- <sup>[13]</sup> R. Köster, W. Schüßler, G. Seidel, Manuskript in Vorbereitung. <sup>[14]</sup> Diorganophosphoroxy-borane: <sup>[14a]</sup> R. Köster, *Diorgano-phos-*biologanophosphoroxy-borane. A. Koster, *Biorganophosphoroxy-borane* in *Methoden Org. Chem. (Houben-Weyl) Aufl.*, **1982**, Bd. XIII/3a (Hrsg.: R. Köster), S. 596–599. –
   <sup>[14b]</sup> R. Köster, Y.-H. Tsay, L. Synoradzki, *Chem. Ber.* **1987**, *120*, 1117–1123. – <sup>[14c]</sup> R. Köster, L. Synoradzki, *Chem. Ber.* **1984**, *117*, 2250–2262. – <sup>[14d]</sup> R. Köster, W. Schüßler, L. Synoradzki, *Chem. Ber.* **1984**, *115*.
- Chem. Ber. 1987, 120, 1105–1115. <sup>[15]</sup> XOPPh<sub>2</sub>–BR<sub>3</sub>-Verbindungen: <sup>[15a]</sup> X = R<sub>3</sub>Si: s. Lit.<sup>[6]</sup>, speziell S. 1017 ff. <sup>[15b]</sup> X = R<sub>2</sub>B: B. Wrackmeyer, R. Köster, Molekülstrukturanalysen von Lewisbase-Triorganoboranen in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1984, Bd. XIII/3c (Hrsg.: R. Köster), S. 526.
- <sup>[16]</sup> [<sup>16a]</sup> R. Köster, Phosphan–Triorganoborane in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1983, Bd. XIII/3b (Hrsg.: R. Köster), S. 466-472. – Nichtcyclische Phosphan-Triorganoborane: <sup>[16b]</sup> M. E. Gurskii, D. G. Pershin, B. M. Mik-hailov, J. Organomet. Chem. **1984**, 260, 17–23. – <sup>[16c]</sup> W. Kaim, Z. Naturforsch., Teil B, **1985**, 40, 61–66. – <sup>[16d]</sup> I. Manners, W. D. Coggio, M. N. Mang, M. Parvez, H. R. Allcock, J. Am. Chem. Soc. **1989**, 111, 3481 – 3482. – <sup>[16e]</sup> D. C. Bradley, J. Chem. Soc., Chem. Commun. 1991, 7-8.
- <sup>[17]</sup> Viergliedrige cyclische Phosphan-Triorganoborane: <sup>[17a]</sup> S. G. Vul'fson, N. N. Sarvarova, A. S. Balueva, O. A. Erastov, B. A. Arbuzov, Izv. Akad. Nauk SSSR 1988, 1445; engl. 1278. <sup>[17b]</sup> A. S. Balueva, O. A. Erastov, *Izv. Akad. Nauk SSSR* **1988**, 163–165; engl. 151–153; *Chem. Abstr.* **1989**, *110*, 75627. <sup>[17c]</sup> T. V. Troepol'skaya, L. V. Ermolaeva, G. A. Vagina, A. S. Balueva, O. A. Erastov, Izv. Akad. Nauk SSSR 1990, 17-20; Chem. Abstr. 1990, 112, 242060.
- Fünfgliedrige Phosphan-Triorganoborane: E. Sattler, Univer-[18] sität Karlsruhe, unveröffentlichte Ergebnisse 1983-1985; vgl.
- Abstr. of Papers 41/2, V. Imeboron, Juli **1983**. <sup>[19]</sup> Sechsgliedrige Phosphan–Triorganoborane: <sup>[19a]</sup> S. Kerschl, B. Wrackmeyer, A. Willhalm, A. Schmidpeter, J. Organomet. Chem. 1987, 319, 49 – 58. – <sup>[19b]</sup> R. Köster, G. Seidel, G. Müller, R. Boese, B. Wrackmeyer, Chem. Ber. 1988, 121, 1381-1392. <sup>[19c]</sup> A. S. Ionkin, S. N. Ignat'eva, O. A. Erastov, B. A. Arbuzov, Yu. Ya. Efremov, V. M. Nekhoroskhkov, *Izv. Akad. Nauk SSSR* **1989**, 1674–1676; *Chem. Abstr.* **1990**, *112*, 139156. – <sup>[19d]</sup> Vgl. Lit.<sup>[6]</sup>, speziell S. 1018-1019.
- <sup>[20]</sup> O-Lewisbase–Triorganoborane und verwandte Verbindungen: <sup>[20a]</sup> R. Köster, Ether–Triorganoborane in Methoden Org. Chem. (Houken-Weyl) 4. Aufl., 1983, Bd. XIII/3b (Hrsg.: R. Köster), S. 426–430. – <sup>[20b]</sup> H. E. Katz, J. Am. Chem. Soc. 1986, 108, 7640–7645. – <sup>[20c]</sup> S. Kerschl, B. Wrackmeyer, J. Organomet. Chem. 1987, 332, 25–33. – <sup>[20d]</sup> S. Kerschl, B. Wrackmeyer, D. Männig, H. Nöth, R. Staudigl, Z. Naturforsch., Teil B, 1987, 42, 387-394. –  $^{[20e]}$  B. Wrackmeyer, K. Horchler, R. Boese, Angew. Chem. 1989, 101, 1563-1565; Angew. Chem. Int. Ed. Engl. 1989,

28, 1500-1502. - <sup>[20f]</sup> B. Wrackmeyer, K. Wagner, Chem. Ber. 1991, 124, 503-508.

- <sup>[21]</sup> Tetraorganodiboroxane einschließlich 1,2,5-Oxadiborolane: <sup>[21a]</sup> R. Köster, Tetraorgano-diboroxane in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., 1982, Bd. XIII/3a (Hrsg.: R. Köster),
   S. 810-822. - <sup>[21b]</sup> W. Haubold, A. Gemmler, U. Kraatz, Z. Anorg. Allg. Chem. 1983, 507, 222-230. - <sup>[21c]</sup> H. E. Katz, J. Org. Chem. 1985, 50, 2575-2576. - <sup>[21d]</sup> R. Köster, M. Yalpani, Angew. Chem. 1985, 97, 600-602; Angew. Chem. Int. Ed. Engl. 1985, 24, 572-574. - <sup>[21e]</sup> R. Köster, P. Idelmann, Inorg. Synth. 1986, 24, 83-87. - <sup>[21e]</sup> R. Köster, W. Schüßler, G. Seidel, Oramowet Swuth 1989, 460-462 ganomet. Synth. 1988, 4, 460-462.
- <sup>[22]</sup> R. Köster, G. Seidel, B. Wrackmeyer, Chem. Ber. 1989, 122, 1825–1850. <sup>[23]</sup> <sup>[23a]</sup> B. Wrackmeyer, R. Köster, Analytik der Lewisbase-Orga-
- nobor-Sauerstoff-Verbindungen in Methoden Org. Chem. (Hou-ben-Weyl) 4. Aufl., **1984**, Bd. XIII/3c (Hrsg.: R. Köster), S. 456–475, speziell S. 474. <sup>[23b]</sup> B. Wrackmeyer, R. Köster, Kernresonanzspektroskopie von Lewisbase-Triorganoboran-Verbindungen in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., **1984**, Bd. XIII/3c (Hrsg.: R. Köster), S. 520-562. – <sup>[23c] 13</sup>C-NMR-Daten von Amin – (R<sub>2</sub>B)<sub>2</sub>O: s. Lit.<sup>[7e]</sup>
- <sup>[24]</sup> B. Wrackmeyer, R. Köster, *Chem. Ber.* 1982, 115, 2022-2034.
- <sup>[25]</sup> Vgl. Lit.<sup>[14b]</sup>, speziell S. 1120.
   <sup>[26]</sup> J. C. Tebby in *Phosphorus-31 NMR Spectroscopy in Stereo* chemical Analysis (Hrsg.: J. G. Verkade, L. D. Quin), VCH Publishers, Deerfield Beach, Florida, 1987, S. 1-60.
- <sup>[27]</sup> J. G. Verkade, J. A. Mosbo in Lit.<sup>[26]</sup>, S. 425-463, speziell S. 445
- [28] R. Köster, G. Seidel, G. Müller, R. Boese, B. Wrackmeyer, Chem. Ber. 1988, 121, 1381-1392.
- <sup>[29]</sup> Weitere Einzelheiten zur Kristallstrukturuntersuchung von 1a und 2b können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57609, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- <sup>[30]</sup> S. Lit.<sup>[6]</sup>, speziell S. 1021, Diskussion der NB-Bindung im Bicyclus I mit CBOSiCCN-Gerüst.
- <sup>[31]</sup> <sup>[31a]</sup> L. Synoradzki, R. Mynott, A. Jiang, C. Krüger, Y.-H. Tsay, R. Köster, *Chem. Ber.* **1984**, *117*, 2863-2874. <sup>[31b]</sup> R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 1988, 121, 597 - 615.
- <sup>[32]</sup> P. S. Bryan, R. L. Kuczkowski, Inorg. Chem. 1972, 11, 553-559.
- <sup>[33]</sup> L. A. Hagelee, R. Köster, Synth. React. Inorg. Metal-Org. Chem. **1977**, 7, 53-67.
- <sup>[34]</sup> M. Yalpani, R. Boese, R. Köster, Chem. Ber. 1990, 123, 1275-1283
- <sup>[35]</sup> X. Feng, M. M. Olmstead, P. P. Power, Inorg. Chem. 1986, 25, 4615—4616.
- <sup>[36]</sup> H. H. Karsch, G. Hanika, B. Huber, J. Riede, G. Müller, J. Organomet. Chem. 1989, 361, C25-C29.
- DSC-Aufnahmen: A. Dreier, Max-Planck-Institut für Kohlenforschung, Mülheim a.d. Ruhr.
- <sup>1381</sup> MS-Daten: D. Henneberg, Max-Planck-Institut für Kohlenfor-schung, Mülheim a.d. Ruhr.
- <sup>[39]</sup> NMR-Kartei: Max-Planck-Institut für Kohlenforschung, Mülheim a.d. Ruhr.
- [40] Wir danken Herrn Professor Dr. B. Wrackmeyer, Universität Bayreuth, für die <sup>17</sup>O-NMR-Messungen und dicsbezügliche Diskussionsbeiträge
- <sup>[41]</sup> H. Böhme, M. Hilp, L. Koch, E. Ritter, Chem. Ber. 1971, 104, 2018 - 2020.

[148/93]